\(\int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx\) [593]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 234 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=-\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {32 a b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d} \]

[Out]

2/21*b*(21*a^2+5*b^2)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+32/35*a*b^2*sec(d*x+c)^(5/2)*sin(d*x+c)/d+2/7*b^2*sec(d*x+
c)^(5/2)*(a+b*sec(d*x+c))*sin(d*x+c)/d+2/5*a*(5*a^2+9*b^2)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-2/5*a*(5*a^2+9*b^2)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+
c)^(1/2)/d+2/21*b*(21*a^2+5*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),
2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {3927, 4132, 3853, 3856, 2720, 4131, 2719} \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {2 b \left (21 a^2+5 b^2\right ) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{21 d}+\frac {2 a \left (5 a^2+9 b^2\right ) \sin (c+d x) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 b^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))}{7 d}+\frac {32 a b^2 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{35 d} \]

[In]

Int[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(-2*a*(5*a^2 + 9*b^2)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*d) + (2*b*(21*a^2 +
5*b^2)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(21*d) + (2*a*(5*a^2 + 9*b^2)*Sqrt[Sec
[c + d*x]]*Sin[c + d*x])/(5*d) + (2*b*(21*a^2 + 5*b^2)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(21*d) + (32*a*b^2*Sec
[c + d*x]^(5/2)*Sin[c + d*x])/(35*d) + (2*b^2*Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])*Sin[c + d*x])/(7*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3927

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Dist[1/(d*(m + n - 1)),
Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2)
+ 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e,
 f, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] &&  !Int
egerQ[m])

Rule 4131

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Dist[(C*m + A*(m + 1))/(m + 1), Int[(b*Csc[e + f*x])^m, x], x
] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]

Rule 4132

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Dist[B/b, Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x
]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {1}{2} a \left (7 a^2+3 b^2\right )+\frac {1}{2} b \left (21 a^2+5 b^2\right ) \sec (c+d x)+8 a b^2 \sec ^2(c+d x)\right ) \, dx \\ & = \frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d}+\frac {2}{7} \int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {1}{2} a \left (7 a^2+3 b^2\right )+8 a b^2 \sec ^2(c+d x)\right ) \, dx+\frac {1}{7} \left (b \left (21 a^2+5 b^2\right )\right ) \int \sec ^{\frac {5}{2}}(c+d x) \, dx \\ & = \frac {2 b \left (21 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {32 a b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d}+\frac {1}{21} \left (b \left (21 a^2+5 b^2\right )\right ) \int \sqrt {\sec (c+d x)} \, dx+\frac {1}{5} \left (a \left (5 a^2+9 b^2\right )\right ) \int \sec ^{\frac {3}{2}}(c+d x) \, dx \\ & = \frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {32 a b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d}-\frac {1}{5} \left (a \left (5 a^2+9 b^2\right )\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx+\frac {1}{21} \left (b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {32 a b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d}-\frac {1}{5} \left (a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {2 a \left (5 a^2+9 b^2\right ) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b \left (21 a^2+5 b^2\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{21 d}+\frac {32 a b^2 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{35 d}+\frac {2 b^2 \sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x)) \sin (c+d x)}{7 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 2.91 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.76 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\frac {\sec ^{\frac {7}{2}}(c+d x) \left (-168 a \left (5 a^2+9 b^2\right ) \cos ^{\frac {7}{2}}(c+d x) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+40 b \left (21 a^2+5 b^2\right ) \cos ^{\frac {7}{2}}(c+d x) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+2 \left (210 a^2 b+110 b^3+63 a \left (5 a^2+13 b^2\right ) \cos (c+d x)+10 \left (21 a^2 b+5 b^3\right ) \cos (2 (c+d x))+105 a^3 \cos (3 (c+d x))+189 a b^2 \cos (3 (c+d x))\right ) \sin (c+d x)\right )}{420 d} \]

[In]

Integrate[Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])^3,x]

[Out]

(Sec[c + d*x]^(7/2)*(-168*a*(5*a^2 + 9*b^2)*Cos[c + d*x]^(7/2)*EllipticE[(c + d*x)/2, 2] + 40*b*(21*a^2 + 5*b^
2)*Cos[c + d*x]^(7/2)*EllipticF[(c + d*x)/2, 2] + 2*(210*a^2*b + 110*b^3 + 63*a*(5*a^2 + 13*b^2)*Cos[c + d*x]
+ 10*(21*a^2*b + 5*b^3)*Cos[2*(c + d*x)] + 105*a^3*Cos[3*(c + d*x)] + 189*a*b^2*Cos[3*(c + d*x)])*Sin[c + d*x]
))/(420*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(819\) vs. \(2(258)=516\).

Time = 45.50 (sec) , antiderivative size = 820, normalized size of antiderivative = 3.50

method result size
default \(\text {Expression too large to display}\) \(820\)
parts \(\text {Expression too large to display}\) \(1008\)

[In]

int(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*a^3/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2
-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-(sin(1/2*d
*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+2*b^3*(-1/56*cos(1/
2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*
x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1
/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2)))+6*a^2*b*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)
^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+6/5*a*b^2/sin(1/2*d*x+1/2
*c)^2/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2*d*x+1/2*c)^6*cos(1
/2*d*x+1/2*c)-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)
^(1/2)*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)+12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+1/2*c)*sin(
1/2*d*x+1/2*c)^2-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^
(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.11 (sec) , antiderivative size = 270, normalized size of antiderivative = 1.15 \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=-\frac {5 \, \sqrt {2} {\left (21 i \, a^{2} b + 5 i \, b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, \sqrt {2} {\left (-21 i \, a^{2} b - 5 i \, b^{3}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, \sqrt {2} {\left (5 i \, a^{3} + 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, \sqrt {2} {\left (-5 i \, a^{3} - 9 i \, a b^{2}\right )} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (63 \, a b^{2} \cos \left (d x + c\right ) + 21 \, {\left (5 \, a^{3} + 9 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 15 \, b^{3} + 5 \, {\left (21 \, a^{2} b + 5 \, b^{3}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{105 \, d \cos \left (d x + c\right )^{3}} \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/105*(5*sqrt(2)*(21*I*a^2*b + 5*I*b^3)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x +
c)) + 5*sqrt(2)*(-21*I*a^2*b - 5*I*b^3)*cos(d*x + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c
)) + 21*sqrt(2)*(5*I*a^3 + 9*I*a*b^2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x
 + c) + I*sin(d*x + c))) + 21*sqrt(2)*(-5*I*a^3 - 9*I*a*b^2)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrass
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(63*a*b^2*cos(d*x + c) + 21*(5*a^3 + 9*a*b^2)*cos(d*x + c)
^3 + 15*b^3 + 5*(21*a^2*b + 5*b^3)*cos(d*x + c)^2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3)

Sympy [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)*(a+b*sec(d*x+c))**3,x)

[Out]

Timed out

Maxima [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

integrate((b*sec(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)

Giac [F]

\[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int { {\left (b \sec \left (d x + c\right ) + a\right )}^{3} \sec \left (d x + c\right )^{\frac {3}{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)*(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate((b*sec(d*x + c) + a)^3*sec(d*x + c)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))^3 \, dx=\int {\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^3\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \]

[In]

int((a + b/cos(c + d*x))^3*(1/cos(c + d*x))^(3/2),x)

[Out]

int((a + b/cos(c + d*x))^3*(1/cos(c + d*x))^(3/2), x)